Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 101: 117645, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401456

RESUMEN

All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.


Asunto(s)
Neoplasias de la Mama , Clorhidrato de Raloxifeno , Ácidos Sulfónicos , Humanos , Femenino , Clorhidrato de Raloxifeno/farmacología , Receptor alfa de Estrógeno , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Esteril-Sulfatasa , Neoplasias de la Mama/tratamiento farmacológico , Moduladores de los Receptores de Estrógeno
2.
Parasitol Int ; 98: 102814, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806551

RESUMEN

Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 µM and 27.21 µM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Humanos , Acanthamoeba castellanii/genética , Ácidos Sulfónicos/farmacología , Alcanosulfonatos , Genotipo
3.
BMC Cancer ; 23(1): 1053, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919708

RESUMEN

BACKGROUND: Breast cancer is the most common malignancy globally, and is considered a major cause of cancer-related death. Tremendous effort is exerted to identify an optimal anticancer drug with limited side effects. The quinoline derivative RIMHS-Qi-23 had a wide-spectrum antiproliferative activity against various types of cancer cells. METHODS: In the current study, the effect of RIMHS-Qi-23 was tested on MCF-7 breast cancer cell line to evaluate its anticancer efficacy in comparison to the reference compound doxorubicin. RESULTS: Our data suggest an anti-proliferative effect of RIMHS-Qi-23 on the MCF-7 cell line with superior potency and selectivity compared to doxorubicin. Our mechanistic study suggested that the anti-proliferative effect of RIMHS-Qi-23 against MCF-7 cell line is not through targeted kinase inhibition but through other molecular machinery targeting cell proliferation and senescence such as cyclophlin A, p62, and LC3. CONCLUSION: RIMHS-Qi-23 is exerting an anti-proliferative effect that is more potent and selective than doxorubicin.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Proliferación Celular , Doxorrubicina/farmacología , Línea Celular Tumoral
4.
Future Med Chem ; 15(20): 1885-1901, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37814826

RESUMEN

Imidazo[2,1-b]oxazole and 2,3-dihydroimidazo[2,1-b]oxazole ring systems are commonly employed in therapeutically active molecules. In this article, the authors review the utilization of these core scaffolds as chemotherapeutic agents from 2018 to 2022. These scaffolds possess many important biological activities including antimicrobial and anticancer, among others. This review covers their biological activities and structure-activity relationships. One of the most important drugs in this class of compounds is the antitubercular agent delamanid. In this paper, the compounds structure-activity relationship and preclinical and clinical trial data are thoroughly presented.


Asunto(s)
Antituberculosos , Oxazoles , Oxazoles/farmacología , Antituberculosos/farmacología , Relación Estructura-Actividad
5.
J Agric Food Chem ; 71(42): 15476-15484, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818663

RESUMEN

The glucosinolate-myrosinase system, exclusively found in the Brassicaceae family, is a main defense strategy against insect resistance. The efficient detoxification activity of glucosinolate sulfatases (GSSs) has successfully supported the feeding of Plutella xylostella on cruciferous plants. With the activity of GSSs hampered in P. xylostella, the toxic isothiocyanates produced from glucosinolates severely impair larval growth and adult reproduction. Therefore, inhibitors of GSSs have been suggested as an alternative approach to controlling P. xylostella. Herein, we synthesized eight adamantyl-possessing sulfamate derivatives as novel inhibitors of GSSs. Adam-20-S exhibited the most potent GSS inhibitory activity, with an IC50 value of 9.04 mg/L. The suppression of GSSs by Adam-20-S impaired glucosinolate metabolism to produce more toxic isothiocyanates in P. xylostella. Consequently, the growth and development of P. xylostella were significantly hindered when feeding on the host plant. Our study may help facilitate the development of a comprehensive pest management strategy that combines insect detoxification enzyme inhibitors with plant chemical defenses.


Asunto(s)
Adamantano , Glucosinolatos , Animales , Glucosinolatos/farmacología , Glucosinolatos/metabolismo , Insectos/metabolismo , Plantas/metabolismo , Sulfatasas , Isotiocianatos/farmacología , Isotiocianatos/metabolismo
6.
Eur J Med Chem ; 261: 115779, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37776574

RESUMEN

A series of 36 pyrazol-4-yl pyridine derivatives (8a-i, 9a-i, 10a-i, and 11a-i) was designed, synthesized, and evaluated for its antiproliferative activity over NCI-60 cancer cell line panel and inhibitory effect against JNK isoforms (JNK1, JNK2, and JNK3). All the synthesized compounds were tested against the NCI-60 cancer cell line panel. Compounds 11b, 11c, 11g, and 11i were selected to determine their GI50s and exerted a superior potency over the reference standard SP600125 against the tested cell lines. 11c showed a GI50 of 1.28 µM against K562 leukemic cells. Vero cells were used to assess 11c cytotoxicity compared to the tested cancer cells. The target compounds were tested against hJNK isoforms in which compound 11e exhibited the highest potency against JNK isoforms with IC50 values of 1.81, 12.7, and 10.5 nM against JNK1, JNK2, and JNK3, respectively. Kinase profiling of 11e showed higher JNK selectivity in 50 kinase panels. Compounds 11c and 11e showed cell population arrest at the G2/M phase, induced early apoptosis, and slightly inhibited beclin-1 production at higher concentrations in K562 leukemia cells relative to SP600125. NanoBRET assay of 11e showed intracellular JNK1 inhibition with an IC50 of 2.81 µM. Also, it inhibited CYP2D6 and 3A4 with different extent and its hERG activity showed little cardiac toxicity with an IC50 of 4.82 µM. hJNK3 was used as a template to generate the hJNK1 crystal structure to explore the binding mode of 11e (PDB ID: 8ENJ) with a resolution of 2.8 °A and showed a typical type I kinase inhibition against hJNK1. Binding energy scores showed that selectivity of 11e towards JNK1 could be attributed to additional hydrophobic interactions relative to JNK3.


Asunto(s)
Azoles , Proteínas Quinasas JNK Activadas por Mitógenos , Animales , Chlorocebus aethiops , Células Vero , Azoles/farmacología , Isoformas de Proteínas , Piridinas/farmacología , Proliferación Celular
7.
Eur J Med Chem ; 261: 115796, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37708796

RESUMEN

FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.


Asunto(s)
Neoplasias , Humanos , Relación Estructura-Actividad , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/metabolismo
8.
Parasitol Res ; 122(11): 2539-2548, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37665414

RESUMEN

Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 µM, while 1k inhibited 50% amoebae growth at 23.31 µM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.


Asunto(s)
Amebicidas , Amoeba , Infecciones Protozoarias del Sistema Nervioso Central , Naegleria fowleri , Humanos , Células Endoteliales , Amebicidas/farmacología , Encéfalo/patología , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico
9.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37562558

RESUMEN

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Asunto(s)
Acanthamoeba castellanii , Animales , Clorhidrato de Raloxifeno/farmacología , Ácidos Sulfónicos/farmacología , Trofozoítos , Alcanosulfonatos/farmacología , Hidrolasas Diéster Fosfóricas/farmacología
10.
PLoS One ; 18(6): e0286684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267378

RESUMEN

Urease enzyme is a known therapeutic drug target for treatment of Helicobacter pylori infection due to its role in settlement and growth in gastric mucosa. In this study, we designed a new series of sulfonates and sulfamates bearing imidazo[2,1-b]thiazole scaffold that exhibit a potent inhibitory activity of urease enzyme. The most potent compound 2c inhibited urease with an IC50 value of 2.94 ± 0.05 µM, which is 8-fold more potent than the thiourea positive control (IC50 = 22.3 ± 0.031 µM). Enzyme kinetics study showed that compound 2c is a competitive inhibitor of urease. Molecular modeling studies of the most potent inhibitors in the urease active site suggested multiple binding interactions with different amino acid residues. Phenotypic screening of the developed compounds against H. pylori delivered molecules of that possess high potency (1a, 1d, 1h, 2d, and 2f) in comparison to the positive control, acetohydroxamic acid. Additional studies to investigate the selectivity of these compounds against AGS gastric cell line and E. coli were performed. Permeability of the most promising derivatives (1a, 1d, 1h, 2d, and 2f) in Caco-2 cell line, was investigated. As a result, compound 1d presented itself as a lead drug candidate since it exhibited a promising inhibition against urease with an IC50 of 3.09 ± 0.07 µM, MIC value against H. pylori of 0.031 ± 0.011 mM, and SI against AGS of 6.05. Interestingly, compound 1d did not show activity against urease-negative E. coli and exhibited a low permeability in Caco-2 cells which supports the potential use of this compound for GIT infection without systemic effect.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Ureasa/metabolismo , Infecciones por Helicobacter/tratamiento farmacológico , Escherichia coli/metabolismo , Células CACO-2 , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
11.
Antibiotics (Basel) ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36978428

RESUMEN

Pathogenic Acanthamoeba produce keratitis and fatal granulomatous amoebic encephalitis. Treatment remains problematic and often ineffective, suggesting the need for the discovery of novel compounds. For the first time, here we evaluated the effects of the anticancer drugs Irosustat and STX140 alone, as well as their nanoformulations, against A. castellanii via amoebicidal, excystment, cytopathogenicity, and cytotoxicity assays. Nanoformulations of the compounds were successfully synthesized with high encapsulation efficiency of 94% and 82% for Irosustat and STX140, respectively. Nanoparticles formed were spherical in shape and had a unimodal narrow particle size distribution, mean of 145 and 244 nm with a polydispersity index of 0.3, and surface charge of -14 and -15 mV, respectively. Irosustat and STX140 exhibited a biphasic release profile with almost 100% drug released after 48 h. Notably, Irosustat significantly inhibited A. castellanii viability and amoebae-mediated cytopathogenicity and inhibited the phenotypic transformation of amoebae cysts into the trophozoite form, however their nanoformulations depicted limited effects against amoebae but exhibited minimal cytotoxicity when tested against human cells using lactate dehydrogenase release assays. Accordingly, both compounds have potential for further studies, with the hope of discovering novel anti-Acanthamoeba compounds, and potentially developing targeted therapy against infections of the central nervous system.

12.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626774

RESUMEN

AIMS: To determine the anti-amoebic activity of benzofuran/benzothiophene-possessing compounds against Acanthamoeba castellanii of the T4 genotype. METHOD AND RESULTS: A series of benzofuran/benzothiophene-possessing compounds were tested for their anti-amoebic activities, in particular, to block encystation and excystation processes in amoebae. Cytotoxicity of the compounds were evaluated using lactate dehydrogenase (LDH) assays. The amoebicidal assay results revealed significant anti-amoebic effects against A. castellanii. Compounds 1p and 1e showed the highest amoebicidal activity, eliminating 68% and 64% of the amoebae, respectively. These compounds remarkably repressed both the encystation and excystation processes in A. castellanii. Furthermore, the selected compounds presented minimal cytotoxic properties against human cells, as well as considerably abridged amoeba-mediated cytopathogenicity when compared to the amoebae alone. CONCLUSIONS: Our findings show that benzofuran/benzothiophene derivatives depict potent anti-amoebic activities; thus these compounds should be used as promising and novel agents in the rationale development of therapeutic strategies against Acanthamoeba infections.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Amoeba , Benzofuranos , Humanos , Acanthamoeba castellanii/genética , Genotipo , Benzofuranos/farmacología
13.
Eur J Med Chem ; 246: 114958, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36470105

RESUMEN

A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Leucemia , Humanos , Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
14.
Bioorg Med Chem ; 69: 116894, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35764033

RESUMEN

The design, synthesis, and biological activities of a new series of pyrazole derivatives are reported. The target compounds 1a-1w were initially investigated against NCI-60 cancer cell lines. Compounds 1f, 1h, 1k, and 1v exerted the highest anti-proliferative activity over the studied panel of cancer cell lines. Compound 1f showed the most potent activity, and it is more potent than sorafenib in 29 cancer cell lines of different types and more potent than SP600125 against almost all the tested cancer cell lines. It also exerted sub-micromolar IC50 values (0.54-0.98 µM) against nine cell lines. Moreover, the 23 target compounds were tested against Hep3B and HepG2 hepatocellular carcinoma cell lines, of which compounds 1b, 1c, and 1h showed the strongest anti-proliferative activity. The most potent anticancer compounds (1b, 1c, 1f, and 1h) demonstrated a high selectivity towards cancer cells vis-à-vis normal cells. Compounds1f and 1h induced apoptosis and mild necrosis upon testing against RPMI-8226 leukemia cells. Kinase profiling of this series led to the discovery of two potent and selective JNK3 inhibitors, compounds 1c and 1f with an IC50 values of 99.0 and 97.4 nM, respectively. Both compounds showed a good inhibitory effect against JNK3 kinase in the whole-cell NanoBRET assay. This finding was further supported through molecular modeling studies with the JNK3 binding site. Moreover, compounds 1c and 1f demonstrated a very weak activity against CYP 2D6, CYP 3A4, and hERG ion channels.


Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Relación Estructura-Actividad
15.
Eur J Med Chem ; 238: 114434, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551038

RESUMEN

This article describes the design, synthesis, and biological screening of a new series of diarylurea and diarylamide derivatives including quinoline core armed with dimethylamino or morpholino side chain. Fifteen target compounds were selected by the National Cancer Institute (NCI, USA) for in vitro antiproliferative screening against a panel of 60 cancer cell lines of nine cancer types. Compounds 1j-l showed the highest mean inhibition percentage values over the 60-cell line panel at 10 µM with broad-spectrum antiproliferative activity. Subsequently, compounds 1j-l were subjected to a dose-response study to measure their GI50 and total growth inhibition (TGI) values against the cell lines. Three of the tested molecules exerted higher potency against most of the cell lines than the reference drug, sorafenib. Compound 1l indicated a higher potency than sorafenib against 53 of tested cancer cell lines. Compounds 1j-l demonstrated promising selectivity against cancer cells than normal cells. Moreover, compound 1l induced apoptosis and necrosis in RPMI-8226 cell line in a dose-dependent manner. In addition, compounds 1j-l were tested against C-RAF kinase as a potential molecular target. The three compounds showed high potency, and the most potent C-RAF kinase inhibitor was compound 1j with an IC50 value of 0.067 µM. In addition, Compounds 1j-l were further tested at 1 µM concentration against a panel of another twelve kinases and they showed a high selectivity for C-RAF kinase. Molecular modeling studies were performed to illuminate on the putative binding interactions of these motifs in the active site of C-RAF kinase. Additional studies were conducted to measure aqueous solubility, partition coefficient, and Caco-2 permeability of the most promising derivatives.


Asunto(s)
Antineoplásicos , Hidroxiquinolinas , Quinolinas , Antineoplásicos/química , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Hidroxiquinolinas/farmacología , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-raf/farmacología , Quinolinas/química , Sorafenib/farmacología , Relación Estructura-Actividad
16.
Anticancer Res ; 42(6): 2911-2921, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35641256

RESUMEN

BACKGROUND/AIM: The B-raf proto-oncogene, serine/threonine kinase (BRAF) V600E mutation is frequent in patients with advanced melanoma. PLX4032, an inhibitor of BRAFV600E kinase, is effective for the treatment of melanoma in BRAF V600E-positive patients; however, resistance eventually develops due to paradoxical activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) pathway resulting from RAF dimerization. In this study, we investigated the inhibitory effects of a novel imidazothiazole-based compound, KS28, on RAF dimerization and resistance to PLX4032 in melanoma. MATERIALS AND METHODS: The effects of KS28 were examined by immunoblotting, cell viability, terminal deoxynucleotidyl transferase dUTP nick-end labeling, reporter-gene, and soft-agar assays. RESULTS: KS28 treatment inhibited RAF dimerization in PLX4032-resistant A375 (A375R) cells, leading to suppression of the MEK/ERK pathway. In addition, KS28 reduced activator protein 1 transactivation in A375R cells, reduced cell viability, and increased DNA fragmentation. Moreover, treatment with KS28 suppressed anchorage-independent growth of A375R cells. Similarly, in an orthotopic tumor xenograft model, KS28 treatment suppressed the growth of tumors formed by A375R cells in BALB/c mice. CONCLUSION: KS28 plays a vital role in overcoming PLX4032 resistance in melanoma by down-regulating the MEK/ERK pathway.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma , Proteínas Proto-Oncogénicas B-raf , Vemurafenib , Animales , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Vemurafenib/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Eur J Pharm Sci ; 171: 106115, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995782

RESUMEN

In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Piridinas/farmacología , Relación Estructura-Actividad
18.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011562

RESUMEN

Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011-2020).


Asunto(s)
Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/tendencias , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazoles/química , Pirazoles/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor , Desarrollo de Medicamentos/historia , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/uso terapéutico , Historia del Siglo XXI , Humanos , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/farmacología , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
19.
Bioorg Chem ; 119: 105545, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915286

RESUMEN

The discovery of life-changing medicines continues to be the driving force for the rapid exploration and expansion of chemical space, enabling access to innovative small molecules of medicinal importance. These small molecules remain the backbone for modern drug discovery. In this context, the treatment of ureolytic bacterial infections inspires the identification of potent and effective inhibitors of urease, a promising and highly needed target for H. pylori eradication. The present study explores the evaluation of sulfamate derivatives for the inhibition of urease enzyme. The tested compounds showed remarkable inhibitory effect and high level of potency. Compound 1q emerged as the lead inhibitor with an IC50 value of 0.062 ± 0.001 µM, ∼360-fold more potent than thiourea (IC50 = 22.31 ± 0.031 µM). The assessment of various contributing factors towards the inhibition profile allowed for the establishment of diverse structure-activity relationships. Kinetics studies revealed the competitive mode of inhibition of compound 1q while molecular modeling analysis identified various crucial binding interactions with ARG609, ARG439, HIS519, HIS492, HIS593, ALA440, and ALA636 in the active pocket of the enzyme. Finally, the calculated pharmacokinetic properties suggest a promising profile of our potent sulfamate-based urease inhibitors.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Helicobacter pylori/efectos de los fármacos , Ácidos Sulfónicos/farmacología , Ureasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Helicobacter pylori/enzimología , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/química , Ureasa/metabolismo
20.
Molecules ; 26(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34885957

RESUMEN

HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.


Asunto(s)
Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-4/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-4/análisis , Receptor ErbB-4/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...